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Abstract which prevents the rollback of a faulty process from caus-
ing the rollback of any other process. Optimistic logging

In this paper, we describe a method of execution retry protocols [10-121 have been proposed to reduce run-time
for bypassing software faults based on checkpointing, roll- overhead by using asynchronous message logging at the ex-
back, message reordering and replaying. We demonstrate pense of possible rollback propagation due to lost volatile
how rollback techniques. previously developedfor transient message logs upon failure.
hardware failure recovery, can also be used to recover from Instead of proposing another checkpointing and recov-
software errors by exploiting message reordering to bypass ery protocol, this paper investigates the possibility of ap-
software faults. Our approach intentionally increases the plying the log-based techniques to recovery from software
degree of nondeterminism and the scope of rollback when errors [10,13-16]. We previously proposed message re-
a previous retry fails. Examples from our experience with ordering for changing the communication pattern at run-
telecommunications software systems illustrate the benefits time in order to reduce the rollback distance for hardware
of the scheme. failures [17]. In this paper, we demonstrate how message

reordering can also provide an effective way of bypassing
certain software faults. Fig. 1 illustrates the basic con-

1 Introduction cept. When a software error is detected at the point marked
"X", rollback and message replaying based on the complete

Numerous checkpointing and rollback recovery tech- checkpoint and message log information may lead to the

niques have been proposed in the literature to recover from same error. By intentionally discarding part of the message

transient hardware failures. Uncoordinated checkpointing logs, we can deterministically reconstruct the system state

schemes [1,2] allow maximum process autonomy and gen- up to the dotted line shown in Fig. 1, and then use message
eral nondeterministic execution, but suffer from potential reordering to introduce nondeterninistic execution beyond

domino effects [3]. Coordinated checkpointing schemes the dotted line in order to bypass the software fault Unlike

[4,5] eliminate the domino effect by sacrificing a certain the recovery block approach [31 and N-version program-

degree of process autonomy and by paying the cost of extra ming [18] which both use different programs to execute

coordination messages. Recently, a lazy checkpoint coor- on the same set of data, the above on-line retry approach

dination technique [6] has been proposed as a mechanism [14,19] uses the same program to operate on a different

for bounding rollback propagation and providing a flexi- but consistent set of data [20] obtained through message

ble trade-off between run-time coordination overhead and reordering.

recovery efficiency. Based on our experience with telecommunications soft-

Log-based recovery provides another way of achieving ware systems, the technique of execution retry with roll-

domino-free recovery. Under the piecewise deterministic back and message replaying has demonstrated its useful-

model [7], the domino effect is avoided through message ness for bypassing the so-called software boundary errors.

logging and deterministic replaying. In a pessimistic log- Usually, an application contains a main routine that per-

ging protocol [8,9], each message is logged upon receipt forms the designated functions, and some boundary code
for handling specific situations, collectively referred to as
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PO +- " 2 Logical Checkpoints and Recovery Lines

. +. Let N be the number of processes in the system. Sup-
pose pt in Fig. 2 initiates a rollback at the point marked
"X". In a general nondetesministic execution, the rollback

P2 4- of pi to its checkpoint C will unsend messages M, and M3 ,
and thus require po to roll back to a state before the receipt

S............................... of M, in order to unreceive M1 and similarly require p2 to
_mreceive M3; otherwise, Ml and M3 are recorded as "re-
ceived but not yet sen't", which results in an inconsistency

P4 •of system state.

+ Checkpoint . Message

Figure 1: Nondeterninistic execution through message re- " & M V
ordering. P1 P 1 C

(8) (b)

Figure 2: State consistency (a) example checkpoint and
possibility of software errors in the boundary code, called comuricationsiatenc (b) eoampl checkpoint d nd

software boundary errors, can be significantly higher than andmrecov line.

that in the main routine [15]. These kinds of software

boundary errors may cause a catastrophic event such as However, if P, can reconstruct the state from which M,
the AT&T 4ESS switching system failure in January 1990 was geerateiP, the executonof pobased onthe processing
[21]. The fact that a software boundary condition usually of M1 is still valid and therefore p0 need not roil back. This
occurs very rarely also suggests that if a boundary error can be achieved by the piecewise deterministic model and
does occur, then on-line retry by replaying and/or reorder- additional message logging and replaying. The piecewise
ing the incoming messages may be helpful in bypassing the deterministic model says: process execution between two
boundary condition. consecutive message receipts, called a state interval, is

deterministic. So ifpi has logged both the message content
The simplest approach to execution retry is to roll back and the state interval index [11] (i.e., the processing order)

the entire system and restart from a consistent global check- for message Mo (but not for M2) by the time it initiates the
point. This can result in nondeterministic execution in a rollback, p1 can deterministically reconsmtct the state up to
distributed message-passing environment and this nonde- immediately before the receipt of M 2 (a nondeterministic
terminism may result in bypassing the boundary condition. event) and therefore M, remains a valid message.
However, it is often desirable to limit the scope of rollback, A useful way to unify these two seemingly different state
the number of involved processes as well as total rollback consistency concepts is to introduce the notion of a logical
distance, in order to achieve faster recovery [22]. It is checkpoint. While a physical checkpoint like checkpoint
possible that a small-scope rollback involving only a few C allows the restoration of process state at the point the
processes suffices for successful retry. This motivates the checkpoint was taken, checkpoint C and the message log
progressive retry concept which progressively increases the of Mo, plus the underlying piecewise deterministic model
scope of rollback to intentionally introduce more nondeter- effectively place a logical checkpoint at the end of the state
minism when a previous retry fails. Such an idea has been interval started by Mo (as shown in Fig. 2(a)) because of the
implemented in a telecommunication billing system and capability of state reconstruction. In other words, although
has been shown to improve the availability of the systems. pi "physically" rolls back to checkpoint C, it "logically"
The objective of this paper is to describe and formalize rolls back to the above logical checkpoint and therefore
the concept of progressive retry with message reordering does not unsend MI. It then becomes clear that while
to bypass software errors and to present a framework for we ng fad-nW [241 failum oly for the pupae of i-
implementation. The technique is being built into an exist- i l cbeckpoue ih- Step 4 and Smep 5 iow progeeive .

ing fault tolerance library [23] in order to facilitate future rMY .chnique dsewsiein die next secmo cam in fact max mso ad
software development. a .u_
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"physical rollback distance" determines the rollback ex- Direct dependency tracking [11,25,261: only the de-
tent of each individual process, "logical rollback distance" pendency of the receiver's logical checkpoint on the
controls the extent of rollback propagation and therefore sender's logical checkpoint resulting from each mes-
the number of processes involved in the recovery. For sage processing is recorded, as opposed to the transi-
simplicity, we let each physical checkpoint initiate a new tive dependency tracking which has been used in many
state interval and represent itby a logical checkpoint at the log-based papers [10,12].
end of that interval. Based on the above notion of logi-
cal checkpoints, the following rollback propagation ru Centralized recovery line computation: the global dm-
is then valid with or without the piecewise deterministic idency information is collected by the processmodel: which initiates the garbage collection or recovery pro-

cedure (2,111 and is responsible for the recovery line
if the sender (logically) rolls back and unsends computation5 .
a message M, the receiver must also (logically)
roll back to unreceive M. 3.1 Recovery Line and Message Logs

We define a global checkpoint as a set of N (logical) With respect to the recovery line consisting of the shaded
checkpoints, one from each process. A consistent global checkpoints shown in Fig. 3,messages can be classified into
checkpoint is a global checkpoint that does not contain any
two checkpoints violating the above rollback propagation four categories.

rule. The recovery line is the latest available consistent 1. Obsolete messages: In order to reconstruct the state
global checkpoint which uniquely minimizes the total roll- up to the recovery line, the system can restart from the
back distance [25]. As an illustration, suppose all the mres- set of restarting checkpoints, called the restart line,
sages in Fig. 2(a) except for M2 are logged when p, initiates as illustrated in Fig. 3. Messages that were processed
the rollback. Fig. 2(b) shows the dependency graph for the before the restart line, for example, Mo, are therefore
available logical checkpoints. By starting with the set of the obsolete messages and not useful for recovery.
last logical checkpoints of each process and applying the
rollback propagation rule described above, we can deter- 2. Messages for deterministic replay (deterministic
mine the recovery line to be the set of shaded checkpoints messages): Messages processed between the restart
in Fig. 2(b). Notice that po may be required to physically line and the recovery line must have both their mes-
roll back in order to regenerate the lost message M2 . sage contents and state interval indices logged. These

messages need to be replayed in their original order
for deterministic state reconstruction. MD and Mb

3 Progressive Retry for Bypassing Software are such messages.
Errors 3. In-transit (or channel-state) messages: For mes-

We base our discussion on the following system model sages sent before the recovery line and processed af-
We baeouery proscuion. oter, only the message contents in the log are valid.

and recovery protocol. The state interval indices are cither not logged or in-

FIFO channel: messages sent along the same channel be- validated. Messages like M, and MI belong to this
tween any two processes are ordered by monotonically category and can be processed in arbitrary order.
increasing sequence numbers. 4. Orphan messages: Messages sent after the recovery

Merge component, messages from all incoming channels line are orphan messages. Mý can not exist because
are merged by the merge component [10] based on a otherwise the recovery line is not consistent MR is
changeable merge function, and are assigned the state invalidated by the rollback and should be discarded.
interval indices.

In an optimistic logging protocol [ 101, rollback propaga-
Logging before processing: every message is logged be- tion can result from the nondeterminism due to lost volatile

fore delivery to the application process4. message logs upon failure. Based on the available message
31n conras, when the receiver (Iogkaiy) t- back and meaves logs from stable storage, the recovery line is uniquely de-

a message M'W. de des n ot have to (logicaly) roil back if M' termined and each message must statically belong to one of
is logged a the sender or the receiver side and can be retrieved during the four categories depending on its position relative to the
mexecution. or if M' can be regenerated by the smandez

4-e results can be extended to systems with as•ychrn•onu (optimistic) 5A disuibuied and synchronizedalgorithn has been pmpoed by Sistla
message logging by making additional ogkal checkpoints umvailable for and Vkkh (121. A distribumed and arynchrnous algorithm can be found
those volatile message lop lost due to the failure. in Strm and Yenini's paper (101.



P0 Message reordering can be achieved by random re-

MD m, ordering or by restoring the in-transit messages to the
MO R M, input of the merge component and re-assigning them

Mwith possibly different state interval indices. An alter-

R /native is to group the messages from the same process
together if the software bug is possibly due to the in-
terleaving of messages from different processes. If

"Restarting checkpoint only two messages are involved, forcing them into the
opposite order may be useful.

Figure 3: Example of obsolete, deterministic, in-transit and Step 3- Sender deterministic retry: The main purposeorphan messages.Stp3-Snedee iidrer:Teanpuos
of this step is to include more "future" messages for
reordering in order to increase the effectiveness. It is

recovery line. In contrast, our retry technique progressively useful, for example, when a software fault is triggered
increases the degree of nondetenninism and the scope of by some unexpected delay in the delivery of certain
rollback by discarding more message logs as a previous messages.
retry fails. At each step, a new recovery line or restart Messages that have arrived at the receiver but not yet
line is computed based on the remaining checkpoint and been logged can be lost upon failure. Message Md

message log information. Since the recovery line moves in Fig. 4 is an example. Such lost messages can be
backward in time during the progressive retry, messages detected6 when the receiver receives another message
belonging to the ith category can shift to the jth category, from the same sender which indicates a discontinuity
where 4 > j > i 1 I, at a later stage. in the message sequence number [10]. The sender is

then requested to resend the message if sender logging

4 Progressive Retry is available [10], or to regenerate the message through
deterministic state reconstruction [12].

We will use the example checkpoint and communication The immediate recovery of such lost messages is use-
pattern shown in Fig. 4 to illustrate progressive retry in five ful for increasing the number of messages available
steps. for reordering. p2 now discards the message contents

of M, and Mb as well. Although the resulting recov-
Step 1 - Receiver deterministic retry: When p2 detects ery line as shown in Fig. 4(c) is the same as the one in

an error, it first initiates a local recovery by rolling (b), p3 in addition to pj and p2 is rolled back7 in order
back to checkpoint C and deterministically replaying to regenerate (recover) the lost message Md.

the message logs. Because every message is logged
before processing, message logs for M,, Mb and M, Step 4 - Sender nondeterministic retry: When reorder-
must be available and allow p2 to reconstruct the state ing M., Mb, Md and possibly other recently arrived
up to the point it detected the error, as illustrated by the non-orphan messages still fails to bypass the software
recovery line shown in Fig. 4(a). In some cases, wan- fault, pi suspects some of these messages should not
sient failures may be caused by some environmental have been generated in the first place. Therefore, pi
factors which will simply disappear after the recovery, and p3 are requested to roll back further by discard-
and the Step-I retry may succeed. If the reexecution ing the state interval indices of the message logs that
still leads to the same error, the checkpoint and mes- can deterministically generate these messages. The
sage log information is copied toa trace file foroff-line resulting recovery line is given in Fig. 4(d). Nonde-
debugging and Step 2 is initiated, terminism can be introduced by pi reordering M, and

Step 2 - Receiver nondeterministic retry: P2 starts in- M., and p3 reordering M., M, and M,.

troducing nondeterminism by discarding the state in- Step 5 - Large-scope rollback retry: When all previous
terval indices of Ma, Mb and Ma in order to allow small-scope retries fail, a large-scope rollback can be
message reordering. As a result, the last three logical
checkp~ints of p2 are now unavailable and the result- 6Fa some qaications, lost mesges may be acxpt-b For ex-
ing recovery line is shown in Fig. 4(b). Notice that arpie, if the lost mesage is a channel request messae in a telephone

swiWtcing applicatio the usr will simply edal or try again latmonly M. and Mb are in-tansit messages available for 7p - notify p3 to wo back by se P the aUM C
reordering; message M, as well as M, now become numbo a=ymessagesentfromp3 andmevedbyp2 beformceckpent

orphan messages and should be discarded. C. Simila mesges are ant to all other proces.
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Figure 4: Progressive retry (a) Step 1: receiver deterministic retry (b) Step 2: receiver nondeterministic retry (c) Step 3:
sender deterministic retry (d) Step 4: sender nondeterministic retry.

initiated. Instead of backing off a few state intervals put can be backed off for introducing nondeterminism
for reordering a small number of messages involving a (10].
small number of processes, all processes in the system
are requested to roll back K intervals where K should
be a large number compared to the distances involved S Experience and Discussion
in Step 1 through Step 4. The recovery line computed
from the remaining available logical checkpoints is In this section, we describe two examples from telecom-
then used for the final-step retry. munications software with software boundary errors. By

using the progressive retry technique (Step I for Case 1
The choice of K is a trade-off between output commit and Step 3 for Case 2), these programs were able to quickly
and garbage collection versus the available nondeter- recover from the errors without service interruption. To
minism. Outputs to the outside world that cannot be simplify the description, we have abstracted only the corn-
rolled back should only be released after the recovery ponents which contributed to the errors.
line has advanced beyond the state intervals that gen-
erate these outputs. Checkpoints and message logs Case 1
can only be garbage-collected after the restart line has A telecommunication billing system consists of several
passed their corresponding state intervals [ 12]. There- processes using shared memory for interprocess communi-
fore, while a larger K means more nondeterminism is cation. There is one writer process which updates several
available, it also results in slower output commit and data structures in the shared memory and the others are
less effective garbage collection, which are translated reader processes which read these data structures. Because
into slowerresponse to the users and larger space over- no semaphore or locking mechanism is used in accessing
head, respectively. In the extreme case where fast out- the shared memory, there is a small probability that a reader
put commit is the most important requirement for the may be accessing the data structure while the writer is up-
system, only those state intervals beyond the last out- dating it (e.g., manipulating the pointers for inserting a new



data node). In such a case, the reader receives a segmen- their messages (Step 3). Because of the nondeterminism
tation violation fault and is then recovered by a watcher in operating system scheduling and communication delay,
process. Once the reader is restarted and tries to read the the messages may arrive at CCM in a different order. For
same data structure again, the read operation succeeds be- example, the message order can be
cause the writer has finished the update. r2 r3 f2 f3 rl fl

This kind of error occurs once every few days. When-
ever it happens, the Step 1 retry mechanism can quickly Since the boundary error does not occur in this case, the

correct the error. An alternative (standard) way of dealing progressive retry involving three processes succeeds.

with this problem would be to use a locking mechanism
for accessing the shared memory. However, using coarse-
grain locks can result in unnecessary blocking of the reader 6 Concluding Remarks
processes, and using fine-grain locks will incur large per- We have described a method of applying the log-
formance degradation and introduce additional software Wehvdscidamtodfaplngheo-

formncedegadaion nd ntrduc addtioal oftare based recovery technique, previously developed for fail-complexity. Therefore, the billing system has relied on the bardwre faiue, prevery fro ped sofareprogressive retry mechanism as an alternative to a locking stp hardware failures, to recovery fr'om transient software
mechanism to deal with the oncurrency problem. Th errors. Our five-step progressive retry approach discards
approach is feasible in this cassebecuse mutual-exclusive pMtial message log information at each step in order to
cnflict only occurs rarely and it is detected when it dolue introduce an increasing degree of nondeterminism for by-
occur. passing software faults. Although not every software error

can be recovered through message resending, reordering
and replaying, we have observed that progressive retry can

Case 2 provide an effective and economic way of recovering from
In a cross-connection system, a Channel Control Mon- boundary errors in long-life software systems. For a spe-

itor (CCM) process is used to track the available channels cific telecommunication billing system, all the software
in the switch. The CCM process receives information from errors occurring for the past two years have been automati-
two other processes: a Channel Allocation (CA) process cally corrected by either Step I or Step 3 of the progressive
which sends the channel allocation requests and a Channel retry mechanism. For a replicated file system, we have
Deallocation (CD) process which sends the channel deal- observed that Step 1 and Step 2 were able to recover from
location requests. A boundary condition for CCM occurs 90% of the software errors for the past six months.
when all channels are used and the process receives addi- The tmchniques described are being implemented in the
tional allocation requests. In that case, a clean-up proce- fault tolerance library libft which has been developed
dure is called to free up some channels or to block further at AT&T BellLabortories [23]. Libft is aC library
requests. However, the clean-up procedure contained a which supports N-version programming, recovery blocks,
software fault which could cause the process to crash. exception handling, message logging, and checkpointing

The cross-connection system uses a daemon watcher to and rollback recovery, and has been used by several AT&T
detect a process failure and employs a checkpointing and products. Currently, the recovery mechanism in 1ibf L
message logging mechanism to recover from the failure. provides the first two steps of progressive retry, with the
The following example illustrates how progressive retry implementation of the remaining steps in progress and the
works in this system. Suppose the number of available investigation of other useful reordering algorithms as an
channels is 5. The command r2 stands for requesting important topic for future research.
two channels, and the command f2 stands for freeing two
channels. The following command sequence could cause Acknowledgement
the CCM process to crash because of the boundary error.
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